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Billiards in the form of a stadium with perturbed boundaries are considered.
Investigations are primarily devoted to billiards having a near-rectangle form,
but the results regarding the ‘‘classical’’ stadium with the boundary that consists
of two semicircles and two parallel segments tangent to them, are also described.
In the phase plane, areas corresponding to decrease and increase of the velocity
of billiard particles are found. The average velocity of the particle ensemble as a
function of the number of collisions with the boundary is obtained.
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1. INTRODUCTION

The notion of billiard dynamical systems is known in physics since
Bikhoff (1) who considered a problem concerning the free motion of a point
particle (billiard ball) in some bounded manifold. The billiard dynamical
system can be introduced as follows. A billiard table Q is a Riemannian
manifold M with a piecewise smooth boundary “Q. The billiard particle
moves freely in Q. Upon reaching the boundary, it is reflected from it elas-
tically. Thus, the billiard particle moves along geodesic lines with a constant
velocity. In the present article we consider billiards in Euclidean plane.
In accordance with the boundary geometry, dynamics of the billiard

particle can be integrable, (2) completely chaotic (3, 4) or, depending on the
initial conditions, regular or chaotic. (5–8)

If the set “Q is not perturbed with time then such billiard systems
are said to be billiards with a fixed (constant) boundary. In the case of “Q=
“Q(t) the corresponding billiards are called billiards with time-dependent



boundaries. For the most part, investigations of classical time-dependent
billiards concerned two main questions: descriptions of their statistical
properties and the study of trajectories for which the particle velocity
grows indefinitely. This problem is related to the unbounded increase of
energy in periodically forced Hamiltonian systems and known as Fermi
acceleration. (9, 10)

The Fermi–Ulam model was the first system where invariant curves,
chaotic layers and stable islands have been investigated (details see in
ref. 11). It has been shown that in the case of a quite smooth boundary
perturbation the growth of the particle velocity is bounded. Otherwise, the
velocity can increase indefinitely.
For two-dimensional time-dependent billiards, the problem of Fermi

acceleration have been investigated in refs. 12 and 13. Integrable billiard
systems in circles and ellipses have been studied in refs. 2, 12, 14, and 15).
In these papers, the authors came to conclusion that the velocity of the
particle ensemble is always bounded. Investigations of chaotic billiards
have been performed for the Lorentz gas. (16, 17) As predicted, perturbations
of the boundary in such billiards lead to the appearance the Fermi acceler-
ation. Moreover, the acceleration is higher for the in-phase periodical
oscillations of the scatterers than for their stochastic perturbations. The
necessary conditions for the existence of chaos in vibrating quantum
billiards on Riemannian manifolds are described in ref. 18. Quantum chaos
in rectangular and spherical vibrating billiards have been investigated in
ref. 19 and 20).
In the present paper, we study so-called stadium-like billiards (8) which

are defined as a closed domain Q with the boundary “Q consisting of
two focusing curves connected by the two parallel lines (see Fig. 1). If
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Fig. 1. A stadium-like billiard and its development.
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parameter b is a sufficiently small then the billiard is a near-integrable
system with stable fixed points. Therefore, in the stochastic ‘‘sea,’’ the sta-
bility regions appear which consist of invariant curves. At the same time,
owing to a weak nonlinearity, dynamics near separatrixes is stochastic, and
the particles can reach neighbourhoods of all points in the stochastic layer.
Thus, for the billiards with the fixed boundary, the particle dynamics can
be either stochastic or regular. Introduction of external perturbations leads
to the possibility of the passage of particles from the stochastic region to
the regular one and back. As a result, new interesting phenomena appear
which are also described in the paper.

2. DEFINITIONS AND MAPS

In this section, basic analytical results are presented. They are neces-
sary for the further description of the billiard dynamics.

2.1. Stadium-Like Billiard with Fixed Parabolic Focusing Components

Consider a billiard shown in Fig. 1. To describe its dynamics let us
construct the corresponding billiard map for b° a. To this end, one can
use the well known method of specular reflections. As a result, the stadium
is replaced by a ‘‘caterpillar.’’ One can show that in both systems the
change of the particle velocity value is the same. Moreover, there is a one-
to-one correspondence between trajectories of the initial billiard and the
obtained ‘‘caterpillar.’’
Suppose that the particle belongs to the billiard boundary and the

velocity vector directs towards the interior of the billiard region Q. Let us
choose coordinates k and x as shown in Fig. 1. The motion of the billiard
particle generates a map (kn, xn)Q (kn+1, xn+1). Suppose that b° l. In
this case the focusing components can be approximated by the functionq(x)=
4bx(x−a)/a2. For such a billiard system the map is written as follows:

xn+1=xn+l tan kn+1 (mod a),

kn+1=kn−2b(xn+1),

where b(x)=arctan (q −(x)) (see Fig. 1). If b is small then b % 4b(2x−a)/a2.
For the further analysis let t=x/a, t ¥ [0, 1). Then

tn+1=tn+
l
a
tan kn (mod 1),

kn+1=kn−
8b
a
(2tn+1−1).

(1)
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In Fig. 2 the phase portrait of the map (1) is shown. Initial conditions
for each trajectory are marked by crosses. It is obvious that the fixed points
of the map (1) corresponding to the family of large ellipses are the follow-
ing: t=1/2, k̃m=arctan(ma/l). So, m=0 corresponds to the first ellipse.
In this case the particle moves strictly vertically (see Fig. 1). If m=1 then
the particle is shifted right by one segment. And so on. For example, in
Fig. 1 the case of m=2 is shown.
Let us find the stability conditions of the fixed points. To this end,

change of variables, tn=Dtn+1/2, kn=Dkn+arctan(ma/l), and linearize
the map. Then we get:

Dtn+1=Dtn+
l

a cos2 k̃m
Dkn+O(Dk

2
n),

Dkn+1=Dkn−
16b
a
Dtn+1,

Fig. 2. Phase portrait of the billiard with parabolic focusing components (see map (1))
at a=0.5, b=0.01 and l=1. The diagram contains three regular trajectories (each by 107

iterations) and one chaotic trajectory (5 · 108 iterations).
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where k̃m=arctan(ma/l). The corresponding transformation matrix has
the form:

A=R 1
l

a cos2 k̃m

−
16b
a
1−

16bl

a2 cos2 k̃m

S .
It is obvious that det A=1. Thus, the map preserves the phase volume.
The stability criterion for the fixed points is |Tr A| [ 2. Then cos2 k̃m

\ 4bl/a2 or m2 [ l/(4b)−l2/a2. On the other hand, transition to chaos
take place if

4bl
a2
> 1. (2)

Eigenvalues of the matrix A are l1, 2=e ±is, where cos s=
1
2 Tr A. Let us

introduce f=l/(a cos2 k̃m), g=16b/a. In this case

A=1 1 f
−g 1−fg

2

and its eigenvectors

X1, 2=R
1

e ±is−1
f

S .

Consider the matrix X with the columns of eigenvectors. As known, in this
case the matrix L=X−1AX is a diagonal one:

L=1e
is 0
0 e−is
2 .

New variables for which the transformation matrix has a diagonal form,
are the following:

R Z
Zg
S=X−1 RDt

Dk
S ,
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where

X−1=
i

2 sin s
R e

−is−1 −f
−e is+1 f

S .

One can see that Z and Zg are complex conjugated values. Thus,

Zn+1=Zne is.

If we take Z as Z=Ie ih then in the action–angle variables we obtain:

In+1=In,

hn+1=hn+s,

where the rotation number is:

s=arccos 11− 8bl
a2 cos2 k̃m
2 . (3)

In turn, the inverse transformations have the form:

Dt=2I cos h,

Dk=
2I
f
(cos(s+h)− cos h).

Therefore, the Jacobian of the transformation is the following: J=
−4If sin s.

2.2. Perturbations of the Boundary and Resonance

Consider the particle trajectory near a fixed point. The time between
two sequential collisions is the following: y % l

cos k̃m
1
V
. Thus, the rotation

period is:

Trot=
2p
s
y=

2pl
cos k̃m arccos (1−8bl/(a cos k)2) V

.

If the system undergoes external perturbations with period Text, then
for Trot=Text we can observe a resonance. This leads to the possibility of
the particle passages from the stochastic region to the regular one and back
(see Fig. 2).
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Fig. 3. Invariant curves around stable points (schematically).

The nature of the resonance (see Fig. 3) is the following. In the unper-
turbed billiards, at the motion along the invariant curve in the neigh-
bourhood of a stable point, the angle k oscillates near the value of k̃m.
Collisions of the particle with the perturbed boundary leads to the change
in k. If the boundary moves towards the particle, then the angle decreases.
Otherwise it increases. Suppose that the trajectory moves along the arc AB.
In this case, if the particle undergoes collisions coming from the opposite
side, then the trajectory is shifted to the fixed point (to the ellipse center in
Fig. 3). Otherwise, the particle trajectory tends to outside of the ellipse, i.e.,
to the stochastic layer.
From the equality Trot=Text, we can obtain the resonance condition

for the particle velocity:

Vr=
l

cos k̃m arccos (1−8bl/(a cos k̃m)2)
. (4)

Hereafter, for simplicity we assume that the frequency of external pertur-
bations w=1. Then Text=2p.
For the invariant curves with k̃m=arctan(ma/l), m \ 1, there exist

two areas: an area where the absolute value of the angle kn increases (along
the arc AB from A to B in Fig. 3), and the area of the decrease in kn.
However, for the central stable fixed point there are two arcs: CD, EF for
increasing and DE, FC for decreasing. Thus, for the resonance in a vicinity
of this point, it is necessary that the particle velocity should be less by half.
Therefore,

V0r=
Vr
2
=

l
arccos(1−8bl/a2)

. (5)

2.3. Focusing Components in the Form of the Circle Arcs

In previous sections, we used a quite rough map based on assumption
b° a, l. In this section we construct an exact map for a stadium-like
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billiard with the boundary consisting of two focusing components in the
form of the circle arcs.

2.3.1. Fixed Boundary

Suppose that focusing components are circle arcs (symmetric about the
vertical billiard axis) of the radius R with the angle measure 2F (Fig. 4).
Geometrically one can obtain that

R=
a2+4b2

8b
; F=arcsin

a
2R
.

If the focusing component is a part of the circle C then in such a billiard
the chaos can be observed when the disk D with “D=C belongs to the
billiard table Q. (21) Thus,

l
2R
=
4bl
a2
> 1,

that is the same as (2) obtained from the analysis of the stable points.
Let us introduce dynamical variables as shown in Fig. 4. Assume that

angles jn and a
g
n are counted counterclockwise, and the angle an is counted

clockwise. For the fixed boundary agn=an. Suppose that Vn is the particle
velocity, and tn is a time of nth collision. Let us find a map describing
dynamics of the particle in such a billiard system. Obviously, we should
consider two cases: (1) After the collision with the focusing component the
particle collides with the same boundary component (multiple collisions);
(2) After the collision the particle moves to the opposite focusing component.
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Fig. 4. A stadium-like billiard with focusing components in the form of the circle arcs.
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(1) Multiple Collisions. In this case, geometrically we get the follow-
ing map:

agn+1=an,

an+1=a
g
n+1,

jn+1=jn+p−2an (mod 2p),

tn+1=tn+
2R cos an
Vn

.

(6)

If |jn+1 | < F, then the particle collides with the same component. Other-
wise, (n+1)th collision with the opposite components occurs.

(2) Collision with opposite components. For this case the map can be
written as follows:

agn+1=arcsin 5sin(kn+F)−
xg
n+1

R
cos kn6 ,

an+1=a
g
n+1,

jn+1=kn−a
g
n+1,

tn+1=tn+
R(cos jn+cos jn+1−2 cos F)+l

Vn cos kn
,

(7)

where

kn=an−jn,

xn=
R
cos kn

[sin an+sin(F−kn)],

xg
n+1=xn+l tan kn (mod a).

These expressions follow from quite simple geometrical considerations
which we omit.

2.3.2. Perturbed Boundary

Consider a billiard system with periodically perturbed focusing com-
ponents. Suppose that the velocity value of the focusing component is the
same in all points, and the velocity vector is directed by the normal to the
component. Assume that the velocity value depends on time as follows:
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U(t)=U0 p(w(t+t0)), where w is a frequency oscillation and p( · ) is a
2p/w periodic function. We study the case of U0/w° l, i.e., the shift of
the boundary is small enough so that it can be neglected. Therefore, the
billiard map is written as follows:

Vn=`V
2
n−1+4Vn−1 cos a

g
nUn+4U

2
n ,

an=arcsin 1
Vn−1
Vn
sin agn 2 ,

(8)

agn+1=an,

jn+1=jn+p−2an (mod 2p),

tn+1=tn+
2R cos an
Vn

,

ˇ if |jn+1 | [ F (9)

kn=an−jn,

xn=
R
cos kn

[sin an+sin(F−kn)],

xgn+1=xn+l tan kn (mod a),

agn+1=arcsin 5sin (kn+F)−
xg
n+1

R
cos kn6 ,

jn+1=kn−a
g
n+1,

tn+1=tn+
R(cos jn+cos jn+1−2 cos F)+l

Vn cos kn
.

ˇ if |jn+p−2an | > F

(10)

The given map describes a stadium-like billiard with the focusing compo-
nents in the form of the circle arcs. This map is the exact one except for the
approximation U0/w° l. The first group (9) corresponds to the sequential
multiple collisions with one of the focusing components, and the second
group (10) corresponds to the passage to the opposite side of the boundary.

3. NUMERICAL ANALYSIS

In this Section we consider stadium-like billiards with the fixed and
perturbed boundaries. In the first case, the particle dynamics is described
by the approximate map (1) and exact map (6)–(7), respectively.
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Fig. 5. Phase portrait of the stadium-like billiard with the focusing components in the form
of the circle arcs (see map (6)–(7)). Parameters of the billiard are the same as in Fig. 2. One
can see nonuniformity of the covering of the chaotic region.

3.1. Phase Diagrams of Billiards with the Fixed Boundaries

In Fig. 2, the phase diagram of the billiard with the fixed parabolic
boundary is shown (see map (1)). Crosses in this figure are initial condi-
tions. One can see that phase plane is divided into regular and chaotic
regions. If the initial conditions belong to the regular region, then the
trajectory lies on the corresponding invariant curves. However, for the
initial conditions in chaotic region, the phase trajectory uniformly covers
this region. The described portrait has been obtained on the basis of three
regular trajectories (each contains 107 iterations) and only one chaotic
trajectory (5 · 108 iterations) of the map (1). Geometrical parameters of the
billiard is the following: a=0.5, b=0.01, l=1 (see Fig. 1).
InFig. 5 similar results for themap (6)–(7),where thedepthof the focusing

components is taken into account, are shown. Remind that for this map
the approximations b° a and b° l have not been used. To reasonable
comparison, the geometric sizes of the billiard and the number of trajec-
tories have been chosen the same as in the previous case (Fig. 2).
The difference between obtained diagrams can be easily explain by

means of Fig. 6. Approximation of a small enough depth of the focusing
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Fig. 6. The difference between the exact billiard map and the approximate map.

component for the map (1) means the following. Let B be an intersection
point of the particle trajectory with a line connecting the ends of the focus-
ing component. In approximation, we consider the particle collision in the
point A which is a projection of B into the arc. But, in fact, the point C is
the collision point. In this case, for a large enough k, collisions occur
mainly with the right (in the figure) part of the arc, and from the collision
to the collision the angle k decreases. Thus, the billiard particles as if ‘‘push
out’’ to the region of small values of the angle k. This is in agreement with
Fig. 5 where the region k M p/2 is empty.
The decrease in the density of trajectories for the large k corresponds

to the known fact that in the chaotic billiards the distribution of the angle
of incidence is in proportion to its cosine. In the stochastic layer (the right
part of Fig. 5), approximation of numerical investigations gives a suffi-
ciently good agreement with this result.

3.2. Perturbed Map

In this section we consider the problem of the velocity change near the
resonance (4).

3.2.1. Phase Diagrams

Consider the map (8)–(10) of the perturbed stadium-like billiard.
Construction of the phase diagrams has been performed for the same
values of geometric parameters as in the previous Section 3.1. Therewith,
the amplitude of oscillations is U0=0.01. As noted above (see Section 2.2),
for various particle velocities the corresponding phase portraits should be
different form each other.
In Fig. 7 the resonance velocity as a function of the angle k̃m (see (4))

is shown. One can see that in the region form 0 to ks max (where ks max is a
maximal angle for which the fixed points are still stable) the value of the
resonance velocity is varied through a small range.
Phase portraits for the perturbed billiard are shown in Figs. 8 and 9.

For detailed numerical analysis three particle ensembles with initial
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Fig. 7. The resonance velocity as a function of k̃m (see (4)).

value V0=1, 1.2 and 1.5 have been considered. Therewith, initial condi-
tions have been chosen in the chaotic region of the unperturbed billiard in
a random way. When the difference between the particle velocity and V0
exceeds 10%, the particle initialisation has been repeated. The phase space
was divided into 300×300 cells. When the particle coordinates (tn, kn) are
within some cell, its value is changed as DVn=Vn−Vn−1. Thus, the obtained
portraits give an insight into the velocity dynamics of the billiard particle.
In Figs. 8 and 9, the vertical shaded areas correspond to the velocity
increasing, and the horizontal shaded areas fit its decreasing. The wait
areas (without shading) are the intermediate ones; here the particle velocity
is transient. The black tones correspond to the areas which are inaccessible
for the phase trajectory.
As follows from the obtained diagrams, if V0 is sufficiently far from Vr

then around the stable fixed points there exist the areas surrounded by
invariant curves. As before, these areas are inaccessible for particles from
the chaotic regions. At the same time, in the neighbourhood which has
became accessible for the particles as a result of perturbations, one can see
areas of the increasing and the decreasing velocity. Depending on the
relation to the resonance velocity value, they can change places.
If V0 % Vr (the resonance), then all neighbourhoods of the stable fixed

points (except for the central one, k0=0, t0=1/2) become accessible for
the trajectory. Moreover, for this resonance there are no the well-defined
areas where the particles have an acceleration.
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Fig. 8. Phase diagrams of the velocity change in the billiard with the perturbed boundary
(see (8)–(10)) at b=0.01, a=0.5, l=1, U0=0.01 and w=1. V0=1.0, 1.2 (resonance), 1.5.
Vertical shaded areas correspond to the velocity increasing, horizontal shaded zones symbolize
its decreasing.
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Fig. 9. The same as in Fig. 8 but V0=0.5, 0.6 (resonance) and 0.7. Billiard parameters are
the same as in Fig. 8.
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Following (5), the resonance velocity in the neighbourhood of the
central stable fixed points V0r % 0.6. In Fig. 9 the phase diagrams for the
initial velocities V0=0.5, 0.6 and 0.7 are shown. One can see that at
V0=V

0
r all areas of the phase space are accessible. Moreover, if the initial

velocity of the particles is a sufficiently near to V0r (but not equal to it) then
there exist areas corresponding to the increase and the decrease in the
velocity. This is valid in neighborhoods of all fixed points. It is obvious
that the reason is in the existence of the half-integer resonance between the
rotation around the fixed point and the external perturbation.

3.2.2. The Particle Velocity as a Function of Iterations

Numerical investigations of the perturbed billiard described by the
map (8)–(10) have been performed for two cases: when the billiard has
strong chaotic properties and for a near-rectangle stadium. In the first case
the billiard is a ‘‘classical’’ stadium. Then Y=p/2, and the billiard is a
domain with the boundary that consists of two semicircles connected by
the two parallel segments tangent to them. The latter case means that the
focusing components are segments of the almost straight line, and the
billiard system is a near-integrable one.
For the first case, the following billiard parameters were chosen as

follows: a=0.5, b=0.25, l=1, u0=0.01, w=1, and V0=0.1. The particle
velocity was calculated as the averaged value of the ensemble of 5000
trajectories with different initial conditions (solid curve 1 in Fig. 10).
These initial conditions were different from each other by a random choice
of the direction of the velocity vector V0. As follows from the numerical
analysis, the obtained dependence has approximately the square-root
behaviour (V(n) ’`n ). The fitting function y ’ anc (the dot-and-dash
curve 1 in Fig. 10) yields the following values: a=0.01015±0.00002 and
c=0.4446±0.0002.
A near-integrable case means that parameter b (see Fig. 4) is a suffi-

ciently small, and the curvature of the focusing components gives rise only
weak nonlinearity in the system. In such a configuration the billiard phase
space has regions with the regular and the chaotic dynamics. This case is
much more interesting for investigations.
As follows from numerical analysis, there is a critical value Vc with the

following properties. If the initial value V0 < Vc then the particle velocity
decreases up to a certain quantity Vfin < Vc, and the particle distribution
tends to the stationary one in the interval (0, Vfin). If, however, V0 > Vc then
the billiard particles can reach high velocities. In this case the particle
distribution is not stationary, and the mean velocity grows infinitely.
Moreover, the average particle velocity is also not bounded.
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Fig. 10. Average velocity of the ensemble of 5000 particles in a stadium as a function of the
number of collisions, l=1, a=0.5, U0=0.01 and w=1. Two (dot-dash and solid) curves 1
corresponds to the billiard with strong chaotic properties (b=0.25). Curves 2–5 correspond to
the near-integrable system (b=0.01): V0=1 (curve 2, 3) and V0=2 (curve 4, 5). Curves 2
and 4 are the average velocities of the particle ensemble. Curves 3 and 5 correspond to
maximal velocities reached by the particle ensemble to the nth iteration.

For detailed numerical investigations initial conditions were randomly
chosen in the chaotic region of the corresponding unperturbed billiard. In
Fig. 10 the average particle velocity as a function of the number of itera-
tions is shown (curves 2–5). The billiard parameters remains the same as
for the classical stadium (curve 1) except for b=0.01. On the basis of 5000
realisations and for every initial velocity, three curves have been con-
structed: the average, minimal and maximal velocities which the particle
ensemble has reached to the n-th iteration. So, we can see the interval of
the velocity change. As follows from the figure, if V0 < Vc then the averaged
particle velocity (solid curve 2) gradually decreases and tends to a constant.
The maximal velocity of particles (dotted curve 3) also decreases up to Vfin
and then fluctuate near this value. Eventually, the particle velocities lie in
the interval 0 < V < Vfin. In the case of V > Vc, the minimal velocity of par-
ticles decreases as before. This means that, in the ensemble, there is a
number of particles which are in the region of low velocity values. In our
numerical analysis the proportion of such particles was about 75%. At the
same time, there are particles with high velocities (dashed curve 5, which
corresponds to the maximal velocity of the ensemble). As a result, the
averaged particle velocity (solid curve 4) increases.
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Fig. 11. Stationary distribution of the particle velocity calculated by the one-particle trajec-
tory during 109 iterations. Vfin is a maximally reached velocity.

In Fig. 11 a stationary velocity distribution is shown. This distribution
was calculated by the one-particle trajectory during 109 iterations. The
initial velocity was chosen as follows: V0 % Vfin/2. The value denoted by Vfin
corresponds to the maximally reached velocity.

4. CONCLUDING REMARKS

Billiards are very convenient models of several physical systems. For
example, particle trajectories in billiards of specific configuration can be
used for modelling a lot of dynamical systems. Moreover, most approaches
to the problems of mixing in many-body systems go back to billiard-like
questions. A natural physical generalization of billiard systems is billiards
whose boundaries are not fixed, but varies by a certain law. This is a quite
new field which opens new prospects in the studies of problems that have
been known for a long time.
In the present paper we have considered the problem of the billiard

ball dynamics in a stadium with the periodically perturbed boundary.
Numerical analysis showed that, for the case of the developed chaos (when
the focusing components of the stadium are semicircles), the dependence of
the particle velocity on the number of collisions has the root character. At
the same time, for a near-rectangle stadium an interesting phenomena
is observed. Depending on the initial values, the particle ensemble can be
accelerated, or its velocity can decrease up to quite a low magnitude.
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However, if the initial values do not belong to a chaotic layer then for quite
high velocities the particle acceleration is not observed.
Analytical description of the considered phenomena requires more

detailed analysis and will be published soon. (22)
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